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The filtered fluid dynamic equations are discretized in space by a high-order spectral dif-
ference (SD) method coupled with large eddy simulation (LES) approach. The subgrid-scale
stress tensor is modelled by the wall-adapting local eddy-viscosity model (WALE). We
solve the unsteady equations by advancing in time using a second-order backward differ-
ence formulae (BDF2) scheme. The nonlinear algebraic system arising from the time dis-
cretization is solved with the nonlinear lower–upper symmetric Gauss–Seidel (LU-SGS)
algorithm. In order to study the sensitivity of the method, first, the implicit solver is used
to compute the two-dimensional (2D) laminar flow around a NACA0012 airfoil at
Re = 5 � 105 with zero angle of attack. Afterwards, the accuracy and the reliability of the
solver are tested by solving the 2D ‘‘turbulent” flow around a square cylinder at Re = 104

and Re = 2.2 � 104. The results show a good agreement with the experimental data and
the reference solutions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Spatially high-order accurate compact schemes are now well established as accurate methods to solve a variety of flow
problems. In Computational Fluid Dynamics (CFD), they are used for Direct Numerical Simulation (DNS), Large Eddy Simu-
lation (LES), Computational Aeroacoustics (CAA) etc., where the accurate resolution of small scales is required. Moreover,
since CFD is increasingly used as an industrial design and analysis tool, high-order accuracy must be achieved on unstruc-
tured grids which are required for efficient meshing. These needs have been the driving force for the development of higher
order schemes for unstructured meshes such as the Discontinuous Galerkin (DG) method [1–5], the Spectral Volume (SV)
method [6–14] and the Spectral Difference (SD) method [15–17]. All these methods use piecewise continuous functions
as the solution approximation space. They are capable of achieving high-order accuracy on unstructured grids and they have
a compact stencil, which makes them easily parallelizable.

The SD method has an important advantage over the DG and SV methods, that no integrals have to be evaluated to com-
pute the residuals, thus avoiding the need for costly high-order accurate quadrature formulas. Recently, there has been re-
search on unifying several of the popular methods including the DG method, the SV method and the SD method with a
technique that does not require the evaluation of the integral [18–20].

So far, the performance of the SD method has been investigated by Liang et al. [21] to solve the compressible turbulent
channel flow at Res = 400 without modelling the contribution from the unresolved scales in the flow field. In [21] a good
. All rights reserved.
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agreement with DNS results of Moser et al. [22] has been found. However, although spatially high-order accurate numerical
schemes guarantee the accurate resolution of small scales, their application for the simulation of general turbulent flows im-
plies that particular attention has still to be paid to subgrid models. In this framework, we couple, for the first time, a high-
order SD scheme on unstructured quadrilateral grids with the local eddy-viscosity (WALE) model [23,24] to compute large
eddy simulations.

One property of a good LES model is that its use in a laminar or low Reynolds number flow results in a solution which is
very close to the solution obtained by solving the Navier–Stokes equations, i.e. the LES model should replicate laminar flows
[25]. Therefore, the sensitivity of the method is first investigated for the flow 2D flow around a NACA0012 airfoil at
Re = 5 � 105, M = 0.4 and zero degrees angle of attack, with a fourth-order SD scheme and quadratic boundary elements.
The accuracy and the reliability of the of the new coupling between the SD method and the WALE model are tested by solv-
ing the 2D ‘‘turbulent” flow around a square cylinder at Re = 104 and Re = 2.2 � 104 with a third-order SD scheme. The ob-
tained results are compared with DNS solutions, LES and experimental results reported in literature.

When high-order schemes are combined with classical solution methods, such as Explicit Runge–Kutta (E-RK) solvers,
they suffer from a restrictive CFL condition and hence a relatively slow convergence rate. In addition, the solver must also
be able to deal with the geometrical stiffness imposed by the Navier–Stokes grids where high-aspect ratios occur near walls.
In the case of compressible solvers there is an additional stiffness when solving for low speed flows caused by the disparate
eigenvalues of the system. Therefore, efficient solvers are needed to fully fulfill the potential of high-order methods. Implicit
time-integration schemes can be used to deal with these problems. These schemes can advance the solution with signifi-
cantly larger time steps compared with explicit methods. However, they may be more expensive than explicit schemes if
the algebraic solver employed is not efficient. In the present study, the unsteady filtered fluid dynamic equations are solved
by advancing in time using a second-order Backward Difference Formula (BDF2) scheme. The nonlinear algebraic system
arising from the time discretization is then solved with the nonlinear Lower–Upper Symmetric Gauss–Seidel (LU-SGS) algo-
rithm. The LU scheme was started by Jameson and Turkel [26] and later reformulated to use symmetric Gauss–Seidel by
Jameson and Yoon in the context of second order central schemes [27]. It was recently rediscovered by Sun et al. [28]
and adapted for use with SD schemes for steady state computations. In Parsani et al. [29] the nonlinear LU-SGS algorithm
in combination with the BDF2 scheme was coupled with the SD method to solve the 2D unsteady Navier–Stokes equations
for laminar/‘‘turbulent” test cases.

The remainder of this article is organized as follows. A brief summary of the filtered fluid dynamic equation for a com-
pressible flow and the description of the WALE model are given in Section 2. Section 3 is devoted to the description of the SD
method and the treatment of the diffusive terms with a fully compact approach, i.e. the second approach of Bassi and Rebay
[30]. In the same section the coupling of the SD method and the WALE model through a new definition of the grid filter width
is given. The nonlinear LU-SGS algorithm combined with the BDF2 scheme is described in Section 4. Section 5 presents
numerical results, before finally drawing conclusions in Section 6.
2. Governing equations for large eddy simulation

In this section the system of the LES fluid dynamic equations for a compressible flow are presented. The three physical
conservation laws for a general Newtonian fluid, i.e. the continuity, the momentum and energy equations, are introduced
using the following notation: q for the mass density,~u 2 Rdim for the velocity vector in a physical space with dim dimensions,
P for the static pressure and E for the specific total energy which is related to the pressure and the velocity vector field by
E ¼ 1
c� 1

P
q
þ j
~uj2

2
; ð1Þ
where c is the constant ratio of specific heats and it is 1.4 for air.
Define a vector w of all the filtered conservative variables, i.e.
w ¼
q

q ~~u

qeE
0B@

1CA; ð2Þ
where the symbols ð��Þ and ð~�Þ represent respectively the spatially filtered field and the Favre filtered field defined as
~~u ¼ q~u=q. The system of the filtered fluid dynamic equations for a compressible flow, written in divergence form and
equipped with suitable initial-boundary conditions, is
@w
@t
þ ~r � ~fCðwÞ �~fDðw; ~rwÞ

� �
¼ @w

@t
þ ~r �~f ¼ 0; ð3Þ
~fCðwÞ ¼ ½fC ;gC ;hC �T and~fD w; ~rw
� �

¼ ½fD;gD;hD�T represent the convective and the diffusive fluxes, respectively. In a general
3D (dim = 3) Cartesian space,~x ¼ ½x1; x2; x3�T , the components of these fluxes are given by
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fC ¼

q~u1

q~u2
1 þ P

q~u1 ~u2

q~u1 ~u3

~u1ðqeE þ PÞ

0BBBBBBBBB@

1CCCCCCCCCA
; gC ¼

q~u2

q~u1~u2

q~u2
2 þ P

q~u2~u3

~u2ðqeE þ PÞ

0BBBBBBBBB@

1CCCCCCCCCA
; hC ¼

q~u3

q~u1~u3

q~u2~u3

q~u2
3 þ P

~u3ðqeE þ PÞ

0BBBBBBBBB@

1CCCCCCCCCA
;

fD ¼

0

~r11 � ssgs
11

~r21 � ssgs
21

~r31 � ssgs
31

~r11 � ssgs
11

� �
~u1 þ ~r21 � ssgs

21

� �
~u2 þ ~r31 � ssgs

31

� �
~u3 þ cP

l
Pr

@~T
@x1
� qsgs

1

0BBBBBBBBB@

1CCCCCCCCCA
; gD ¼

0

~r12 � ssgs
12

~r22 � ssgs
22

~r32 � ssgs
32

~r12 � ssgs
12

� �
~u1 þ ~r22 � ssgs

22

� �
~u2 þ ~r32 � ssgs

32

� �
~u3 þ cP

l
Pr

@~T
@x2
� qsgs

2

0BBBBBBBBB@

1CCCCCCCCCA
;

hD ¼

0

~r13 � ssgs
13

~r23 � ssgs
23

~r33 � ssgs
33

~r13 � ssgs
13

� �
~u1 þ ~r23 � ssgs

23

� �
~u2 þ ~r33 � ssgs

33

� �
~u3 þ cP

l
Pr

@~T
@x3
� qsgs

3

0BBBBBBBBB@

1CCCCCCCCCA
;

where cP,l,Pr and T represent respectively the specific heat capacity at constant pressure, the dynamic viscosity, the Prandtl
number and the temperature of the fluid. Moreover, rij represents the ij-component of the resolved viscous stress tensor de-
fined as
~rij ¼ 2l ~Sij �
dij

3
~Smm

� �
i; j ¼ 1; . . . ;dim; ð4Þ

~Sij ¼ Sij
~~u
� �

¼ 1
2

@~ui

@xj
þ @

~uj

@xi

� �
i; j ¼ 1; . . . ;dim; ð5Þ
where dij is the Kronecker Delta function.
From the definitions of the fluxes components it is seen that both the momentum and the energy equations differ from

the classical fluid dynamic equations only for two terms which take into account the contributions from the unresolved
scales. These contributions, represented by the specific subgrid-scale stress tensor ssgs

ij and by the subgrid-scale heat-flux
vector defined qsgs

i , appear when the spatial filter is applied to the convective terms and they are defined as follows
ssgs
ij ¼ q guiuj � ~ui~uj

� �
i; j ¼ 1; . . . ;dim; ð6Þ

qsgs
i ¼ cPq gTui � eT ~ui

� �
i ¼ 1; . . . ; dim: ð7Þ
The interactions of ssgs
ij and qsgs

i with the resolved scales have to be modeled through a subgrid-scale model because they can-
not be determined using only the resolved flow field w.

2.1. The wall-adapted local eddy-viscosity model

In the previous section, it was seen that the smaller scales and their interaction with the resolved scales have to be mod-
eled through the subgrid-scale term ssgs

ij . The tensor ssgs
ij can be modeled at different levels of complexity. The most common

approach is based on the eddy-viscosity concept in which one assumes that the residual stress is proportional to the filtered
rate of strain, which is defined as follows:
ssgs
ij � ssgs

kk dij ¼ �2qmt
eSij �

dij

3
eSkk

� �
¼ �2qmt

eSD
ij ; ð8Þ
In the wall-adapted local eddy-viscosity (WALE) proposed by Nicoud and Ducros [23], it is assumed that the eddy-viscosity mt

is proportional to the square of the length scale of the filter and the filtered local rate of strain. Although the model was orig-
inally developed for incompressible flows, it can also be used for variable density flows by giving the formulation as follows
[24]
mt ¼ ðCDÞ2jeSj: ð9Þ
Here jeSj is defined as
jeSj ¼ eSd
ij
eSd

ij

h i3=2

eSij
eSij

h i5=2
þ eSd

ij
eSd

ij

h i5=4 ; ð10Þ
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where eSd
ij is given by
eSd
ij ¼

1
2

~g2
ij þ ~g2

ji

� �
� dij

3
~g2

kk: ð11Þ
with
~g2
ij ¼

@~ui

@xk

@~uk

@xj
: ð12Þ
Note that in Eq. (9) D, i.e. the width of the grid filter, is an unknown function. Often the grid filter width is taken proportional
to the smallest resolvable length scale of the discretization. In the present work, the definition of the grid filter function is
given in Section 3.2, where the spectral difference method is discussed.

The WALE model is specifically designed to return the correct wall-asymptotic y+3– variation of the subgrid-scale viscos-
ity mt [23] and the constant model coefficient C can be adjusted so that the correct amount of subgrid dissipation is obtained.
This model has the following properties:

� It is invariant to any coordinate translation or rotation.
� It is easily computed on any kind of computational grid.
� It is a function of both the strain and the rotation rates.
� It naturally goes to zero at the wall: neither damping function nor dynamic procedure is needed to reproduce the effect of

the no-slip condition.

For the subgrid heat-flux vector qsgs
i , if an eddy diffusivity model [31] is used, the following expression is obtained
qsgs
i ¼ Cp �qðgTui � eT ~uiÞ ¼ ��q

mtCp

Prt

@eT
@xi

; ð13Þ
where the value of the turbulent Prandtl number Prt is set to 0.72 [32] and the eddy-viscosity is computed by Eq. (9).

3. Spectral difference method

In this section the spectral difference (SD) method is presented for the discretization of the filtered fluid dynamics equa-
tions for compressible flow. Consider a problem governed by a general system of conservation laws given by Eq. (3) and valid
on a domain V for the filtered conservative variable vector w defined in Eq. (2). The domain is divided into N non-overlapping
cells, with cell index i. In each cell, a 3D mapped coordinate system~n ¼ ½n1; n2; n3�T is introduced, with the transformation to
Cartesian coordinates defined by
~xi ¼
x1;i

x2;i

x3;i

264
375 ¼ x1;iðn1; n2; n3Þ

x2;iðn1; n2; n3Þ
x3;iðn1; n2; n3Þ

264
375 ¼~xið~nÞ: ð14Þ

!

The Jacobian matrix for this transformation is denoted as J
!

i and the Jacobian determinant as Ji. The fluxes projected in the
mapped coordinate system~f~n are related to the Cartesian flux components~f for the cell i by
~f
~n
i ¼

f
~n
i

g
~n
i

h
~n
i

2664
3775 ¼ Ji J

!
!
�1
i

f i

gi

hi

264
375 ¼ Ji J

!
!
�1
i
~f i: ð15Þ
Therefore, the governing Eq. (3) can be written in the mapped coordinate system as
@ðJiwÞ
@t

� @w
~n
i

@t
¼ � @f

~n
i

@n1
� @g

~n
i

@n2
� @h

~n
i

@n3
¼ �~r~n �~f~ni ; ð16Þ
with w
~n
i � Jiw the conservative variables in the mapped coordinate system.

For a dim-dimensional (p + 1)th order scheme, Nsðp; dimÞ solution points with index j are introduced at positions~ns
j , sup-

porting a set of Lagrangian basis polynomials Ls
j ð~nÞ of degree p. Based on these basis polynomials, one can approximate the

solution in cell i with a pth order polynomial as follows
wi �W ið~nÞ ¼
XNs

j¼1

W i;jL
s
j
~n
� �

; ð17Þ
where the conservative variables at the solution points Wi,j denote the solution variables of the SD method. The evolution of
these variables is governed by Eq. (16) evaluated at the solution points.
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To estimate the divergence of the mapped fluxes ~r~n �~f~ni at the solution points, a set of Nf flux points with index l and at
positions~nf

l , supporting a polynomial of degree p + 1, is introduced. The evolution of the mapped flux vector~f~n in cell i is then
approximated by a flux polynomial~F

~n
i , which is obtained by reconstructing the solution variables at the flux points and eval-

uating the fluxes~F
~n
i;l at these points. To ensure a coupling between the cells, a number of flux points needs to lie at the faces

or the corners of the cell. In order to maintain conservation at a cell level, the flux component normal to a face must be con-
tinuous between two neighbouring cells. Since the solution at a face is in general not continuous, this requires the introduc-
tion of Riemann solvers at those points. Two different approaches were discussed in Liu et al. [15] and in Wang et al. [16]. The
first approach involves the definition of multi-dimensional Riemann solvers, while the second one uses multiple 1D Riemann
solvers. One can find more information in the references mentioned above. The flux polynomial is then defined by
~F
~n
i
~n
� �
¼
XNf

l¼1

~F
~n
i;l L

f
l
~n
� �

; ð18Þ
where the Lf
l ð~nÞ are the Lagrangian basis polynomials associated with the flux points. Taking the divergence of the flux poly-

nomial ~r~n �~F~ni in the solution points results in the following modified form of Eq. (16), describing the evolution of the con-
servative variables in the solution points:
dW i;j

dt
¼ �~r �~Fi

���
j
¼ � 1

Ji;j

~r~n �~F~ni
���

j
¼ Ri;j; ð19Þ
where Ri;j is the SD residual associated to W i;j. This is a system of ordinary differential equations in time for the solution un-
knowns W i;j, which can be solved numerically using any classical method for such system.

In the present paper, only meshes with quadrilateral (2D) are considered. For such cells, different sets of flux points are
used for the different components of the mapped flux vector. For the f

~n-component, a set of flux points that supports a poly-
nomial of degree p + 1 in n1 and of degree p in n2 and n3 is defined. These flux points are labeled the ‘n1-flux points’ in the
remainder of this paper. For the g~n- and h

~n-components, ‘n2-’ and ‘n3-flux points’ are introduced analogously. The solution
and flux points distributions for second- and third-order accurate quadrilateral SD cells are illustrated in Fig. 1 and 2
respectively.

In Van den Abeele et al. [33] it was shown that the distribution of the solution points has very little influence on the prop-
erties of the SD schemes, and in fact, for linear problems, the different distributions in the figures lead to identical results. It
is easily seen that the rightmost distributions in the figures allow for a significant reduction in the solution reconstruction
cost. Notice that for the third-order scheme, there is a free parameter a3 for the flux point distributions. In general, the flux
points are not uniquely defined for schemes with p > 1. The choice of the flux point distribution was shown to have an impor-
tant influence on the stability and accuracy of the SD schemes in Van den Abeele et al. [33]. In Huynh et al.[18], it was proven
that for quadrilateral and hexahedral cells, tensor product flux point distributions based on a 1D flux point distribution con-
sisting of the end points and the Legendre–Gauss quadrature points, lead to stable schemes for arbitrary values of p. Conse-
quently, in the present paper, symmetrical distributions with most solution points at flux points, shown in Fig. 1c and Fig. 2c,
are used, where the flux point distribution is defined using Legendre–Gauss quadrature points. Finally, since only one com-
ponent of the projected flux vectors is reconstructed in each set of flux points, a traditional 1D Riemann flux, like the Rusanov
or the Roe flux [34,35], suffices for the treatment of the convective fluxes at face flux points in quadrilateral and hexahedral
SD cells.
3.1. Spectral difference formulation for diffusive terms

Generally speaking, the different treatments used for the diffusive terms for the SD methods are all adopted from ap-
proaches developed for the DG method. An overview of them can be found in Arnold et al. [36]. However, in the present pa-
per only one treatment is considered, i.e. the second approach of Bassi and Rebay (BR2) in [30].

For the evaluation of the diffusive flux vector~fD w; ~rw
� �

, the gradients of the conservative variables must be available at
the flux points. Defining the vectors J

!
n1
i ; J
!

n2
i and J

!
n3
i as
Ji J
!
!
�1
i ¼ J

!
n1
i ; J

!
n2
i ; J

!
n3
i

h iT
; ð20Þ
a gradient approximation polynomial U
!

iðnÞ is obtained by computing the values at the solution points as follows:
~rwji;j �
1
Ji;j

@ �W i J
!

n1
i

@n1
þ @

�W i J
!

n2
i

@n2
þ @

�W i J
!

n3
i

@n3

24 35
j

¼ U
!

i;j; ð21Þ
where �W i is a polynomial of degree p + 1, defined by its values at the flux points. At an internal flux point, this is just the
value of the polynomial Wi. At a face flux point, it is equal to an average value Ŵ , of the two available values WL and WR,
which is defined in Section 3.1.1. The gradients in cell i are then approximated by U

!
ið~nÞ, given by
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~rwji � U
!

ið~nÞ ¼
XNs

j¼1

U
!

i;jL
s
j ð~nÞ: ð22Þ
The diffusive flux vector is approximated as~fD W i;U
!

i

� �
in an internal flux point. At a face, two values, U

!
L and U

!
R, of U

!
are

available. An averaged value
^
U
!

is then used, also defined in Section 3.1.1. The normal component of the diffusive flux vector

is thus evaluated as~fDð0:5ðWL þWRÞ;
^
U
!
Þ �~1n in a face flux point, where the unit normal vector in the physical space ~1n to a

face points from the left (L) to the right (R) neighbouring cell.

3.1.1. The second approach of bassi and rebay

The BR2 definition of Ŵ and
^
U
!

is
Ŵ ¼WL þWR

2
; ð23Þ

^
U
!
¼
~rWL þ ~rWR

2
þu

K
!

L þ K
!

R

2
; ð24Þ
where u defines the amount of damping added to the gradients. It is always equal to one in the present work. The lifting
operators K

!
L and K

!
R, associated to a face, can be interpreted as corrections to the gradients of the solution polynomials in

the neighbouring cells. These lifting operators are polynomials defined in the neighbouring cells by their values at the solu-
tion points:
K
!

LðRÞ;j ¼
1

JLðRÞ;j

~r~n dWLðRÞ

h i
j
: ð25Þ
In this expression, dW is a polynomial of degree p + 1, defined by its values at the flux points:
dWLðRÞ;l ¼
ðWR;l �WL;lÞ J J

!
!
�1

 !T

~1~nn

������
������

LðRÞ;l

~1n l 2 curr: face;

0 elsewise;

8>>><>>>: ð26Þ
where~1~nn is the unit normal to the face in the mapped coordinate system. Unlike the Local Spectral Difference approach [37],
the BR2 approach is fully compact, as only the immediate neighbors are required for the computation of the residuals in a
cell. For p = 0, the gradients of the solution polynomials are always zero, ~rWL ¼ ~rWR ¼ 0, and the gradients at a face are
approximated by the lifting operators alone as shown in Eq. (24).

3.2. Grid filter width for the subgrid-scale model

In Section 2.1 it is seen that in the WALE model the grid filter width D is used to compute the turbulent eddy-viscosity, i.e.
Eq. (9). In general D is an unknown function and it has to be defined to have a closed model. Often, the grid filter width is
taken proportional to the smallest resolvable length scale of the discretization and for a general cell with index i is usually
approximated by
Di ¼
Ydim

k¼1

hk

 !1=dim

; ð27Þ
where hk is the size of the cell in the k-direction. However, at the face flux points, two values of D are available, labeled DL

and DR. Consequently, an averaged value for the filter width is generally used,
bDi ¼
DL þ DR

2
: ð28Þ
For classical finite volume (FV) methods, Eq. (28) uniquely defines the grid filter width because for these schemes the flux
points always lie at the cell face. However, the same reasoning applied to a general SD method implies a natural formulation
of the grid filter width based on the Jacobian determinant of the transformation defined by Eq. (14). However, since in the SD
scheme each cell has interior solution points and a high-order polynomial approximation occurs in the cell, it is natural to
choose the filter width depending on the order of the polynomial. Therefore, in the definition of the grid filter width, the
order of the polynomial is taken into account through the division of the Jacobian determinant by the number of solution
points, i.e. Ns(p, dim). Consequently, for each cell with index i and each flux points with index l and positions~nf

l , we propose
the following new definition of the grid filter width
Di;l ¼
1
Ns det J

!
!

ij~nf
l

 !" #1=dim

¼
Ji;l

Ns

� �1=dim

: ð29Þ
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Eq. (29) uniquely defines the filter width for the internal flux points but for the face flux points two values of the Jacobians
determinant are available, labeled JL,l and JR,l. Consequently, an averaged value is again used, i.e.
bDi;l ¼
det J

!
!

Lj~nf
l

 !
þ det J

!
!

Rj~nf
l

 !
2Ns

266664
377775

1=dim

¼
JL;l þ JR;l

2Ns

� �1=dim

: ð30Þ
Notice that with this approach, the cell filter width is not constant in one cell, but it varies because the Jacobian matrix is a
function of the positions of the flux points. Moreover, for a given mesh, the number of solution points depends on the order
of the SD scheme, so that the grid filter width vary by varying the order of the scheme. The proposed approach is valid for
high-order schemes and it is consistent because the filter width is a function of the polynomial order through the number of
solution points. In fact, the grid filter width decreases by increasing the polynomial order of the solution approximation.
4. Nonlinear lower–upper symmetric Gauss–Seidel method

Applying the SD method to a set of convection–diffusion equations results in a semi-discretization in space of the form
(19). This expression can be discretized in time using any classical method. If an explicit time stepping algorithm, like a Run-
ge–Kutta method, is used, then, because of the Courant–Friedrichs–Lewy stability condition for the convective terms, there is
a maximum value, proportional to the cell size and inversely proportional to the maximum wave propagation velocity, for
the associated time step Dt. This stability limit is often too restrictive, especially for high-order schemes and Navier–Stokes
grids. Implicit time-integration schemes can be used to deal with these problems because they do not suffer from such a
stability limit. In the present work, the second-order backward difference formula (BDF2) with variable time-step,
1þ 2sn

1þ sn
Wjtnþ1

� ð1þ snÞWjtn
þ s2

n

1þ sn
Wjtn�1

¼ DtnRjtnþ1
; ð31Þ
is employed to integrate, in time, the system of ODEs which arises from the spatial discretization of the Navier–Stokes equa-
tion using the SD method. In Eq. (31) n is the index of the time iteration, Dtn ¼ tnþ1 � tn and sn ¼ Dtn

Dtn�1
. The BDF2 method is A-

stable [38]. So if BDF2 is employed to solve the linear Cauchy problem,
dy
dt ¼ kyðtÞ; t > 0;
yð0Þ ¼ y0;

(

its absolute stability region is
A ¼ fz ¼ Dtnk 2 C�g:
The aforementioned property is important to solve systems of stiff ODEs which often arise from the discretization of the fluid
dynamic equations with a spatially high-order numerical scheme. In fact, the Fourier footprint of a spatial scheme, which
gives an indication of the stiffness of the problem, grows with increasing the order of the method.

Expression (31) is a nonlinear algebraic system, which has to be solved each time iteration to find the solution at the next
iteration tn+1 starting from the two previous time iterations tn and tn�1. Writing Eq. (31) for one cell (with the current cell
denoted by the subscript cc, the neighbouring cells that contribute to its residual denoted by the subscript nb) omitting
the solution point index j, and linearizing the residual about time iteration tn, one obtains
DWcc

Dtn
� b1

@Rcc

@Wcc

����
tn

DWcc þ
X

nb

@Rcc

@Wnb

����
tn

DWnb

 !
¼ b2 Wccjtn

�Wccjtn�1

� �
þ b1Rccjtn

; ð32Þ
with DW ¼Wjtnþ1
�Wjtn

; b1 ¼ 1þsn
1þ2sn

and b2 ¼
s2

n
Dtnð1þ2snÞ. Applying a (symmetric) Gauss–Seidel (SGS) algorithm to solve this lin-

ear algebraic system results in
�b1
@Rcc

@Wcc

����
tn

þ I
Dtn

" #
DWmþ1

cc ¼ b1 Rccjtn
þ
X

nb

@Rcc

@Wnb

����
tn

DW	
nb

 !
þ b2 Wccjtn

�Wccjtn�1

� �
; ð33Þ
where the approximation of the linear system solution at the iteration m is written as DWm, and the superscript * signifies
the latest available solution.

To avoid the storage of the off-diagonal block matrices @Rcc
@Wnb
jtn

, expression (33) is further manipulated to obtain
�b1
@Rcc

@Wcc

����
tn

þ I
Dtn

" #
DWmþ1

cc ¼ b1 R	cc �
@Rcc

@Wcc

����
tn

DW	
cc

 !
þ b2 Wccjtn

�Wccjtn�1

� �
; ð34Þ
where the following linearization about the time tn is used,



5380 M. Parsani et al. / Journal of Computational Physics 229 (2010) 5373–5393
Rccjtn
þ
X

nb

@Rcc

@Wnb

����
tn

DW	
nb � Rcc W	

cc; W	
nb

	 
� �
� @Rcc

@Wcc

����
tn

DW	
cc: ð35Þ
Defining dWmþ1
cc ¼ DWmþ1

cc � DW	
cc ¼Wmþ1

cc �W	
cc , the final expression of the nonlinear LU-SGS algorithm for the BDF2

scheme with variable time step is then:
�b1
@Rcc

@Wcc

����
tn

þ I
Dtn

" #
dWmþ1

cc ¼ b1R	cc þ b2ðWccjtn
�Wccjtn�1

Þ � DW	
cc

Dtn
: ð36Þ
The inverse of the small Jacobian matrices in the left hand side of this expression can be computed using a LU decomposition
at the beginning of each time iteration, which makes the solution of the small linear algebraic systems much more efficient
during subsequent SGS sweeps. Note, that this LU-SGS algorithm acts directly on the nonlinear algebraic system to be solved,
which is the right hand side of expression (36). For this reason the algorithm is called nonlinear LU-SGS algorithm.

Since only the diagonal block Jacobians is stored, the total number of variables N needed for these Jacobians, in 3D, is
N½ðpþ 1Þ3 � physical variables�2: ð37Þ
From expression (37), it is clear that the nonlinear LU-SGS method requires significantly less memory than the classical
method that use the full Jacobian matrix (for instance the GMRES algorithm [39,40]), but the required amount still increases
with p to the power six. In this study, the Jacobian matrices are numerically obtained using the following numerical
differencing
@Rcc

@Wcc
¼ RccðWcc þ dWcc;WnbÞ � RccðWcc;WnbÞ

dWcc
; ð38Þ
where dWcc is a small value computed as
dWcc ¼ kWcc �W ref ke: ð39Þ
Wref and e are respectively the reference conservative variables and a small constant set equal to something larger than the
square root of machine emach [40]. In the present work, with 64-bit double precision machine, e was set to 10�5.
5. Numerical results

All test cases considered here are governed by the 2D fluid dynamic equations. In order to study the quality of the new
coupling approach, the results obtained with and without the subgrid-scale model are compared with the reference solu-
tions. All quantities are non-dimensionalized using the flow quantities at the free-stream/inflow location, which is indicated
by the subscript 1.

As previously mentioned, one property of a good LES model is that its use in a laminar or low Reynolds number flow re-
sults in a solution which is very close to the solution obtained by solving the Navier–Stokes equations [25]. Therefore, the
sensitivity of the method is first investigated by solving the flow 2D flow around a NACA0012 airfoil at Re = 5 � 105,M = 0.4
and zero angle of attack. For this test case, a DNS reported in Sandberg et al. is available [41]. Afterwards, the new coupling
between the SD method and LES is tested by solving the 2D ‘‘turbulent” flow around a square cylinder at Re = 104 and
Re = 2.2 � 104. The obtained results are compared with the DNS results of Wissink [43] and the LES and experimental results
reported in Bouris et al. [44].
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Fig. 1. Second-order quadrilateral SD cells. Solution points ( ) and n1- (.) and n2-flux points ( ).
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The nonlinear system (36) is solved with multiple cell-wise symmetric forward and backward sweeps with a prescribed
tolerance of 10�6 on the change of the L2 norm of the solution variation dW ðmþ1Þ

cc and/or a maximum number of 100 symmet-
ric Gauss–Seidel sweeps. During the calculations, the maximum number of symmetric Gauss–Seidel sweeps is never require.
However, during the initial time steps (depending on the test cases and on the initial solution) the number of inner LU-SGS
sweeps is between forty and forty-five, for the present test cases. Afterwards, the number decreases and it reaches a values
which is between eight and twelve (depending again on the test cases). The meshes were created using Gmsh [45] which
allows second-order (p = 2) polynomial approximation of the boundary elements. The computations were done on a machine
with eight Dual Core AMD OpteronTMprocessors with a clock-speed of 2412 MHz, using the COOLFluiD collaborative simu-
lation environment [46]. Twenty-four gigabytes of RAM were available.

5.1. 2D flow around a NACA0012 airfoil at low Reynolds number

The compressible laminar flow simulation over a symmetric NACA0012 airfoil is conducted at a = 0� and M = 0.4. The
characteristic Reynolds number based on the chord c and the module of free-stream velocity j~u1 j is specified as
Re = 5 � 105. In Fig. 3 the configuration of the test case is illustrated. The airfoil is placed on v2 ¼ 0. At the left-hand-side
boundary (the inflow) the flow is prescribed to be uniform and the same boundary conditions are applied to the upper
and lower boundaries. At the right-hand-side boundary (the outflow), far enough from the profile, only the pressure is
prescribed.

The test case is solved using a fourth-order (p = 3) SD scheme and a mesh with 19874 quadrilateral cells and quadratic
(p = 2) boundary elements. The maximum aspect ratio AR of the first layer of the cells close to the airfoil is large. The
time-step used for the computation starts from 0.00001 and increases linearly till 0.00125. This time-step allows � 300 time
samples per period of the vortex shedding.



Fig. 3. Configuration of the 2D NACA0012 test case.
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The instantaneous contour lines of the entropy obtained using the subgrid-scale model, are shown in Fig. 4 to give an
impression of the flow field around the airfoil. The flow around the body is almost symmetric on the top and the bottom
sides of the airfoil and an unsteady wake develops downstream of the trailing edge. In Fig. 5 the fast Fourier transform
(FFT) of the lift coefficient cl at a statistically steady state solution with the subgrid-scale model is shown. Notice that the
cl for the airfoil is computed as the ratio between the instantaneous global force L in the direction perpendicular to the
free-stream velocity ~u1 and the dynamic pressure 1

2 qj~u1j2 times the chord c, i.e. cl ¼ L
1
2qj~u1j

2c
. In Fig. 5 one distinct peak

can be observed in the lift coefficient spectrum, which corresponds to the frequency f of the unsteady wake. The non-dimen-
sional values of f, i.e. the reduced frequencies
fr ¼
f c

2

a1ð1�M2Þ
; ð40Þ
where a1 is the free-stream speed of sound, are listed in Table 1 together with the 2D DNS result of Sandberg et al. [41],
where a fourth-order numerical scheme without upwinding, artificial dissipation or explicit filtering [42] is used. For
Fig. 4. Instantaneous entropy contours of the 2D NACA0012 airfoil at Re = 5 � 105, M = 0.4, a=0� and subgrid-scale model.



Table 1
Reduced frequency of the 2D NACA0012 airfoil at Re = 5 � 105, Mc = 0.4 and a = 0�.

Reduced frequency fr

DNS, [41] SD no model SD–LES

6.580 6.650 6.649
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DNS, a mesh with 2243 � 692 non-equidistantly spaced points in the tangential and in the normal direction with respect to
the airfoil surface was employed. From Table 1 it can be seen that the reduced frequency is in good agreement with the DNS
value for both computations. In fact, the error with and without subgrid-scale model is respectively 1.04% and 1.06%. This is a
good achievement since the grid employed is very coarse compared to the grid used for a DNS computation. Moreover, as
was expected, the subgrid-scale model does not affect the frequency of the vortex shedding when the laminar flow is well
resolved. To conclude this study, in Fig. 6 the time-averaged center-line velocity component h~u1i is compared with the 2D
DNS solution. Fig. 6 shows that after an initial peak, h~u1i becomes negative before increasing to positive values further down-
stream, i.e. a reverse flow region is present. This reverse flow region is caused by flow oscillating around the trailing-edge
corner at the wake frequency. From this figure, it is seen that the solutions obtained with and without subgrid-scale model
are almost indistinguishable. Therefore, the new coupling between the SD method and LES replicates the laminar flows ob-
tained by solving the pure Navier–Stokes equations. Moreover, the comparisons show a good agreement between the pres-
ent numerical results and the 2D DNS solution of Sandberg et al. [41].
5.2. 2D flow around a square cylinder at Re = 104

The purpose of this test case is to compare the quality of the present numerical approach with a reference 2D DNS solu-
tion presented by Wissink in [43]. In Fig. 7, the configuration of the test case is illustrated. The cylinder is placed on v2 ¼ 0. At
the left-hand-side boundary (the inflow) the flow is prescribed to be uniform. The same conditions are applied to the upper
boundary and to the lower boundary. At the right-hand-side boundary, far enough from the cylinder, only the pressure is
prescribed. The Mach number is set to 0.05, so that the flow is almost incompressible. Notice that, although the Mach num-
ber is rather small, no specific difficulties of convergence and/or accuracy have been observed. An investigation of the effects
Fig. 6. Time averaged center-line (x2 = 0) velocity component h~u1 i
j~u1j of the 2D NACA0012 airfoil at Re = 5 � 105,M = 0.4 and a=0�. Comparison with the DNS

solution of Sandberg et al. [41].

Fig. 7. Configuration of the 2D square cylinder test case.





After the breaking of the symmetry, the resolved turbulent properties have been obtained by statistically averaging, for
approximately 28 shedding cycles. In Fig. 10, the time-averaged velocity profiles h~u1i

j~u1j at the upper side of the cylinder are plot-



Fig. 10 (continued)
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ted. The 2D DNS solution is also plotted in this figure for comparison. It can be observed that the SD method, in combination
with LES works very well and improves the accuracy of the results obtained with the SD method without the subgrid-scale
model. The improvement is clearly visible at trailing edge of the cylinder (Fig. 10i and j), where the LES solution captures



quite well the variation of the velocity profiles close to the wall, whereas the solution obtained without subgrid-scale model
differs clearly from the DNS solution. The h~u1i

j~u1j profiles plotted in Fig. 11 have been gathered at various stations x1 = constant
behind the cylinder. Fig. 11 shows once more that the SD–LES simulation works well and improves the accuracy of the re-
sults obtained solving the pure Navier–Stokes equations. In fact, the velocity profiles obtained with the subgrid-scale model
are close to those computed with the DNS.
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In order to study the effect of the polynomial order on the LES solution, we also have performed a simulation with a sec-
ond-order spatial discretization (p = 1) on the same grid. Thus, the number of DOFs was reduced by a factor of 2.25. In Figs. 12
and 13, the results obtained at three locations on the side of the square cylinder and at two locations downstream in the
wake are shown, respectively. One can compare the solutions and see that the solution obtained with the second-order
SD scheme is much less accurate than the one obtained with the third-order SD scheme. Although, the second-order accurate
solution is able to capture the main features of the flow, the velocity profiles show an large deviation from the DNS solution
both on the side of the square cylinder and in the wake.

To conclude the study of this test case, a simple estimation of the Reynolds number scaling of the computational cost of
the SD–LES is given. From literature (see [48]), the computational cost of the DNS for isotropic turbulence, i.e. the total num-
ber of modes to resolve the entire energy spectrum in 3D, is proportional to a power of the Reynolds number
Fig. 12.
order (
Nmod;3D 
 Re9=4
L ;
where ReL is the Reynolds number based on the length scale L characterizing the large eddies. For the present test cases L can
be chosen equal to the height of the square cylinder, i.e. h. For a classical finite volume scheme, Nmod, 3D corresponds to the
number of DOFs. Using the same relation presented above, the number of DOFs needed to perform a DNS with SD can be
roughly estimated as
Time averaged velocity profiles h~u1i
j~u1j at two selected locations along the upper